首页 > 教程 > 主成分分析(PCA):数据降维的数学方法

主成分分析(PCA):数据降维的数学方法

时间:2024-06-05 | 来源: | 阅读:183

话题: 降维 再见 | C 算法 PC 数学

?大侠幸会,在下全网同名[算法金] 0 基础转 AI 上岸,多个算法赛 Top [日更万日,让更多人享受智能乐趣] 1. 概念:数据降维的数学方法 定义 主成分分析(PCA)是一种统计方法,通过正交变换将一组可能相关的变量转换为一组线性不相关的变量,这组新的变量称为主成分。 大白话,PCA能够从数据

?大侠幸会,在下全网同名[算法金] 0 基础转 AI 上岸,多个算法赛 Top [日更万日,让更多人享受智能乐趣]

1. 概念:数据降维的数学方法

定义

  • 主成分分析(PCA)是一种统计方法,通过正交变换将一组可能相关的变量转换为一组线性不相关的变量,这组新的变量称为主成分。
  • 大白话,PCA能够从数据中提取出最重要的特征,通过减少变量的数量来简化模型,同时保留原始数据集中的大部分信息。

特点

  • PCA是最广泛使用的数据降维技术之一,能够有效地揭示数据的内部结构,减少分析问题的复杂度。

应用领域

  • 图像处理:图像压缩和特征提取。
  • 金融数据分析:风险管理、股票市场分析。
  • 生物信息学:基因数据分析、疾病预测。
  • 社会科学研究:问卷数据分析、人口研究。

2 核心原理:方差最大化

  • 方差最大化:
  • PCA通过找到数据方差最大的方向来确定主成分,然后找到次大方向,且这些方向必须是相互正交的。
  • 这样做的目的是保证降维后的数据能够保留最多的原始数据信息。

  • 计算步骤:
  1. 数据标准化:使得每个特征的平均值为0,方差为1。
  2. 计算协方差矩阵:反映变量之间的相关性。
  3. 计算协方差矩阵的特征值和特征向量:特征向量决定了PCA的方向,特征值决定了方向的重要性。
  4. 选择主成分:根据特征值的大小,选择最重要的几个特征向量,构成新的特征空间。

3 优缺点分析

  • 优点:
  • 降维效果显著:能够有效地减少数据的维度,同时尽可能地保留原始数据的信息。
  • 揭示数据结构:有助于发现数据中的模式和结构,便于进一步分析。
  • 无需标签数据:PCA是一种无监督学习算法,不需要数据标签。
  • 缺点:
  • 线性限制:PCA只能捕捉到数据的线性关系和结构,对于非线性结构无能为力。
  • 方差并非信息量的唯一衡量:有时候数据的重要性并不仅仅体现在方差上,PCA可能会忽略掉一些重要信息。
  • 对异常值敏感:异常值可能会对PCA的结果产生较大影响。

4 PCA 实战

介绍一个用于主成分分析的 Python 库

PCA的核心是构建在sklearn功能之上,以便在与其他包结合时实现最大的兼容性。

除了常规的PCA外,它还可以执行SparsePCA和TruncatedSVD。

其他功能包括:

  • 使用Biplot绘制载荷图
  • 确定解释的方差
  • 提取性能最佳的特征
  • 使用载荷绘制的散点图
  • 使用Hotelling T2和/或SPE/Dmodx进行异常值检测
pip install pca

from pca import pca  # 导入PCA模块
import numpy as np
import pandas as pd

# Dataset
from sklearn.datasets import load_iris  # 导入鸢尾花数据集

# 从鸢尾花数据集中创建DataFrame对象
X = pd.DataFrame(data=load_iris().data, columns=load_iris().feature_names, index=load_iris().target)

# 初始化PCA模型,指定主成分数量为3,并进行数据标准化
model = pca(n_components=3, normalize=True)

# 拟合并转换数据
out = model.fit_transform(X)

# 创建只包含方向的图
fig, ax = model.biplot(textlabel=True, legend=False, figsize=(10, 6))

下面我们使用 sklearn 里面的 PCA 工具,在一组人脸数据上直观感受下,


# 导入必要的库
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_olivetti_faces
from sklearn.decomposition import PCA

# 加载Olivetti人脸数据集
faces_data = fetch_olivetti_faces()
X = faces_data.data

# 可视化原始图像和对应的主成分
n_images = 4  # 每行显示的图像数量
n_rows = 4    # 总共的行数

fig, axes = plt.subplots(n_rows, 2*n_images, figsize=(16, 10), subplot_kw={'xticks':[], 'yticks':[]})

# 使用PCA降维
n_components = 50  # 设置PCA保留的主成分数量
pca = PCA(n_components=n_components, whiten=True, random_state=42)
X_pca = pca.fit_transform(X)

for r in range(n_rows):
    for i in range(n_images):
        index = r * n_images + i
        
        axes[r, 2*i].imshow(X[index].reshape(64, 64), cmap='gray')
        axes[r, 2*i].set_title(f'大侠 {index+1} 图像', fontproperties='SimHei')  # 手动设置字体

        axes[r, 2*i+1].imshow(pca.inverse_transform(X_pca[index]).reshape(64, 64), cmap='bone')
        axes[r, 2*i+1].set_title(f'大侠 {index+1} 主成分', fontproperties='SimHei')  # 手动设置字体

plt.tight_layout()
plt.show()

我们保留了前 50 个主成分

通过可视化对比图直观感受下,信息保留了多多少,损失了多少

通过对比图可以看到,某一张人脸的基本信息都保留了下来

如果保留 前 100 个主成分,那就更接近原始图片了

你也可以试下,保留 1 个主成分会怎样?通过保留的信息你还认得出来哪过大侠是哪过吗

[算法金,碎碎念]

  • 最近 【不上班】 这个词频繁出现在朋友圈,貌似很火
  • 不上班,站着把钱赚了,大概率不可能的
  • 不上班,躺着把钱赚了(别想歪了),更是绝大概率不可能的
  • 有些圈子,天然就是靠博眼球来筛选用户,真的很可怕
  • 想到了一句话【当大家都有病时,你就不觉得这是病了】
  • 在这种圈子呆久了,大概率会沦陷的,别以外自己不会,咱都是普通人
  • 大部分人都是普通人,普通人通常都不信概率,而概率恰恰是反映常态 分布的
  • 悲剧,卒~

全网同名,日更万日,让更多人享受智能乐趣

烦请大侠多多 分享、在看、点赞,助力算法金又猛又持久、很黄很 BL 的日更下去;我们一起,让更多人享受智能乐趣

同时邀请大侠 关注、星标 算法金,围观日更万日,助你功力大增、笑傲江湖


湘ICP备2022002427号-10湘公网安备:43070202000427号
© 2013~2019 haote.com 好特网