Works详细列举了从雇主角度看来,数据科学家加强自身市场竞争力所必备的9个数据科学技能。
过去一年中人们对数据科学的兴趣骤然增长。Nate Silver这个名字已经家喻户晓,所有公司都在寻找独角兽,很多不同学科的专业人才都开始关注这份薪水丰厚的职业,并将其当作自己可能的职业选择。
在Burtch Works开展招聘工作时,我们与很多想要在数据科学这一成长性领域有所发展的分析学专家探讨过,对具体的实施方案提出了疑问。我从招聘者的角度列出了在数据科学方面对成功十分关键,并且是招聘经理首先考虑的一些技术类与非技术类技能。
各公司在技能与工具的价值评判上都不尽相同,因此这个列表绝对谈不上详尽,不过在这些领域有过经验的人会在数据科学上占有更大的优势。
技术技能:分析学
1、教育——数据科学家受教育程度都很高,其中88%至少拥有硕士学位,46%有博士学位。虽然有一些名人特例,不过通常来说成为一名数据科学家需要扎实的教育背景,才能掌握所需的深度知识。最常见的研究领域包括数学与统计学(32%),其次是计算机科学(19%)以及工程学(16%)。
2、SAS软件与/或R语言——对其中至少一种分析工具有深入的了解,一般对数据科学来说R语言更好一些。
技术能力:计算机科学
3、都是公司在招聘数据科学类角色时最常提出的语言要求。
4、Hadoop平台——尽管不是总有这个需求,不过在很多情况下掌握它的人优势更大。熟悉Hive或Pig也是很有利的卖点。熟悉类似Amazon S3这样的云工具也会很有优势。
5、SQL数据库/编程——尽管NoSQL和Hadoop已经成为了数据科学很大的组成部分之一,招聘者还是希望能够找到可以编写与执行SQL复杂查询的候选人。
6、非结构化数据——数据科学家能够处理非结构化数据这一点非常重要,无论这些数据是来自社交媒体、视频源或者音频的。
非技术类技能
7、求知欲——毫无疑问最近到处都能看到这个词,尤其是在与数据科学家关联时。Frank Lo在几个月前的博文中描述了这个词的含义,并且讨论了其他必须的“软技能”。
湘ICP备2022002427号-10湘公网安备:43070202000427号
© 2013~2019 haote.com 好特网